NOMBRES – Curiosités, Théorie et Usages

 

Accueil                           DicoNombre            Rubriques           Nouveautés      Édition du: 20/11/2024

Orientation générale        DicoMot Math          Atlas                   Actualités                       M'écrire

Barre de recherche          DicoCulture              Index alphabétique        Références      Brèves de Maths                                                                           

TABLES

 

Débutants

Nombres

FACTEURS

 

Glossaire

Nombres

 

 

INDEX

 

Table

 

Facteurs

1 à 299

Facteurs

300 à 1010

Puissances

Nature

1 à 999

Diviseurs

en puissances

Quantité de facteurs identiques

 

Sommaire

>>> Nombres voisins avec même quantité de facteurs

>>> Nombres composés sandwiches autour d'un premier

>>> Nombres consécutifs avec même quantité de facteurs (tous)

 

>>> TABLE des facteurs des nombres de 1 à 299

  

 

 

 

Facteurs et diviseurs

des nombres de 1 à 299

 

Facteurs

Diviseurs

Quantité de diviseurs

Somme des Diviseurs propres

 

Rappel: les nombres premiers sont ceux qui ont

un seul facteur (lui-même), soit
deux diviseurs seulement (1 et lui-même).

La somme des diviseurs propres est égale à 1.

 

 

Facteurs et diviseurs

*  Glossaire

*  Explications

*  Théorie

*  Fonctions arithmétiques

*  Quantité de facteurs uniques et répétés

*  Types de nombres selon leurs facteurs

Pour consulter le détail sur chaque nombre

*  Dictionnaire des nombres

 

Nombres voisins avec même quantité de facteurs

Exemples

Les nombres 230 et 231 ont tous deux 3 facteurs, et ce sont les plus petits nombres ayant cette propriété.

 

Les nombres 135 et 136 ont tous deux 4 facteurs, y compris les facteurs répétés, et ce sont les plus petits de ce genre.

 

Nombres composés sandwiches autour d'un premier

On s'intéresse au nombre composé (p – 1) et (p + 1) autour des nombres premiers p. On compte la quantité de facteurs de ces deux nombres et on retient le plus petit ayant k facteurs:

 

Exemple pour k = 3:  130 = 2.5.13 / 131 premier / 132 = 2².3.11 

 

Pour les k successifs on a:

*      Nombre premier 1-sandwich:     3

*      Nombre premier 2-sandwich:   11

*      Nombre premier 3-sandwich: 131

 

Liste pour le nombre central premier

3, 11, 131, 1429, 77141, 3847271, 117048931, 22917541219, 1771365487891, 140734085123059, 14159733947566481, …

 

Liste pour le nombre central quelconque (premier ou composé)

3, 11, 131, 1429, 77141, 1456729, 117048931, 10326137821, 1110819807371, 140734085123059, 11639258217451019, …

Anglais: Smallest prime sandwiched between two numbers having exactly k prime divisors

Voir Nombres sandwiches

 

Nombres consécutifs avec même quantité de facteurs (tous)

 

Avec 9 et 10: deux nombres consécutifs avec deux facteurs.

Avec 602 à 606: cinq nombres consécutifs avec trois facteurs.

Et ce sont les cas avec les nombres les plus petits

2 (2)

3 (2)

4 et 5 (3)

6 (3)

  9 = 3  ×  3

10 = 2  ×  5

33 = 3  ×  11

34 = 2  ×  17

35 = 5  ×  7

602 = 2  ×  7  ×  43

603 = 3  ×  3  ×  67

604 = 2  ×  2 × 151

605 = 5  ×  11  ×  11

606 = 2  ×  3  ×  101

2 522 =  2 × 13 × 97

2 523 =  3 × 292

2 524 =  22 × 631

2 525 =  52 × 101

2 526 =  2 × 3 × 421

2 527 =  7 × 192

2 528 =  25 × 79

2 529 =  32 × 281

 

 

7 (3)

8 et 9 (4)

211 673 =  7 × 11 × 2 749

211 674 =  2 × 3 × 35 279

211 675 =  52 × 8 467

211 676 =  22 × 52 919

211 677 =  3 × 37 × 1 907

211 678 =  2 × 109 × 971

211 679 =  13 × 19 × 857

3 405 122 =  2 × 7 × 29 × 8 387

3 405 123 =  32 × 19 × 19 913

3 405 124 =  22 × 127 × 6 703

3 405 125 =  53 × 27 241

3 405 126 =  2 × 3 × 59 × 9 619

3 405 127 =  11 × 23 × 43 × 313

3 405 128 =  23 × 425 641

3 405 129 =  3 × 7 × 13 × 12 473

3 405 130 =  2 × 5 × 167 × 2 039

 

 Voir Suite de nombres consécutifs avec même quantité de facteurs distincts

 

 

Nombres consécutifs avec même unité du plus grand facteur

Impossible, évidemment, avec 5 et les unités paires.

Voir Nombre 12 / Nombre 52 / Nombre 121 / Nombre 187 / Nombre 583

 

Nombres consécutifs avec les mêmes chiffres dans leurs facteurs

Exemples

Les facteurs des nombres 8 et 9 sont formés avec les chiffres {2 et 3}.

Les nombres 146, 147 et 148 sont le plus petit triplet de nombres consécutifs a avoir les mêmes chiffres pour facteurs {1, 2, 3, 7}.

 

Ils sont quatorze tels nombres jusqu'à 1000.

 

Cas de trois nombres consécutifs avec mêmes chiffres dans leurs facteurs

 Voir Nombre 146 / Nombre 8 762

 

 

 

TABLES

 

N

Facteurs

Diviseurs

Quantité

Somme'

Note

1

2

3

4

5

6

7

8

9

 

(1)

(2)

(3)

(2)^2

(5)

(2)*(3)

(7)

(2)^3

(3)^2

 

{1}

{1, 2}

{1, 3}

{1, 2, 4}

{1, 5}

{1, 2, 3, 6}

{1, 7}

{1, 2, 4, 8}

{1, 3, 9}

 

1

2

2

3

2

4

2

4

3

 

0

1

1

3

1

6

1

7

4

 

Ni premier, ni composé

Premier

Premier

Composé, déficient

Premier

Composé, parfait

Premier

Composé, déficient

Composé, déficient

 

 

Rappel: le chapeau exprime la puissance 2^2 = 2²; l'astérisque * indique la multiplication

La somme donnée est celle des diviseurs propres (somme', marquée avec un prime)
Elle permet d'apprécier l'abondance ou la déficience d'un seul coup d'œil.

 

Quantité record de facteurs

 

Facteurs multiples (y compris les facteurs répétés)

Tous: [1, 2], [2, 4], [3, 8], [4, 16], [5, 32], [6, 64], [7, 128], … = 2k

Hors puissances de 2 pures: [1, 3], [2, 6], [3, 12], [4, 24], [5, 48], [6, 96], [7, 192], [8, 384], [9, 768] ,[10,1536],[11,3072],[12,6144], … = 2 x 3k

Hors nombres pairs: [1, 3], [2, 9], [3, 27], [4, 81], [5, 243], [6, 729], [7, 2187], [8, 6561] … = 3k

 

Facteurs simples: [1, 2], [2, 6], [3, 30], [4, 210], [5, 2310], [6, 30030] …  = primorielles. Exemple: 30 030 = 2x3x5x7x11x13

 

 

 

N

Facteurs

Diviseurs

Quantité

Somme'

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

 

(2)*(5)

(11)

(2)^2*(3)

(13)

(2)*(7)

(3)*(5)

(2)^4

(17)

(2)*(3)^2

(19)

(2)^2*(5)

(3)*(7)

(2)*(11)

(23)

(2)^3*(3)

(5)^2

(2)*(13)

(3)^3

(2)^2*(7)

(29)

(2)*(3)*(5)

(31)

(2)^5

(3)*(11)

(2)*(17)

(5)*(7)

(2)^2*(3)^2

(37)

(2)*(19)

(3)*(13)

(2)^3*(5)

(41)

(2)*(3)*(7)

(43)

(2)^2*(11)

(3)^2*(5)

(2)*(23)

(47)

(2)^4*(3)

(7)^2

(2)*(5)^2

(3)*(17)

(2)^2*(13)

(53)

(2)*(3)^3

(5)*(11)

(2)^3*(7)

(3)*(19)

(2)*(29)

(59)

(2)^2*(3)*(5)

(61)

(2)*(31)

(3)^2*(7)

(2)^6

(5)*(13)

(2)*(3)*(11)

(67)

(2)^2*(17)

(3)*(23)

(2)*(5)*(7)

(71)

(2)^3*(3)^2

(73)

(2)*(37)

(3)*(5)^2

(2)^2*(19)

(7)*(11)

(2)*(3)*(13)

(79)

(2)^4*(5)

(3)^4

(2)*(41)

(83)

(2)^2*(3)*(7)

(5)*(17)

(2)*(43)

(3)*(29)

(2)^3*(11)

(89)

(2)*(3)^2*(5)

(7)*(13)

(2)^2*(23)

(3)*(31)

(2)*(47)

(5)*(19)

(2)^5*(3)

(97)

(2)*(7)^2

(3)^2*(11)

 

{1,2,5,10}

{1,11}

{1,2,3,4,6,12}

{1,13}

{1,2,7,14}

{1,3,5,15}

{1,2,4,8,16}

{1,17}

{1,2,3,6,9,18}

{1,19}

{1,2,4,5,10,20}

{1,3,7,21}

{1,2,11,22}

{1,23}

{1,2,3,4,6,8,12,24}

{1,5,25}

{1,2,13,26}

{1,3,9,27}

{1,2,4,7,14,28}

{1,29}

{1,2,3,5,6,10,15,30}

{1,31}

{1,2,4,8,16,32}

{1,3,11,33}

{1,2,17,34}

{1,5,7,35}

{1,2,3,4,6,9,12,18,36}

{1,37}

{1,2,19,38}

{1,3,13,39}

{1,2,4,5,8,10,20,40}

{1,41}

{1,2,3,6,7,14,21,42}

{1,43}

{1,2,4,11,22,44}

{1,3,5,9,15,45}

{1,2,23,46}

{1,47}

{1,2,3,4,6,8,12,16,24,48}

{1,7,49}

{1,2,5,10,25,50}

{1,3,17,51}

{1,2,4,13,26,52}

{1,53}

{1,2,3,6,9,18,27,54}

{1,5,11,55}

{1,2,4,7,8,14,28,56}

{1,3,19,57}

{1,2,29,58}

{1,59}

{1,2,3,4,5,6,10,12,15,20,30,60}

{1,61}

{1,2,31,62}

{1,3,7,9,21,63}

{1,2,4,8,16,32,64}

{1,5,13,65}

{1,2,3,6,11,22,33,66}

{1,67}

{1,2,4,17,34,68}

{1,3,23,69}

{1,2,5,7,10,14,35,70}

{1,71}

{1,2,3,4,6,8,9,12,18,24,36,72}

{1,73}

{1,2,37,74}

{1,3,5,15,25,75}

{1,2,4,19,38,76}

{1,7,11,77}

{1,2,3,6,13,26,39,78}

{1,79}

{1,2,4,5,8,10,16,20,40,80}

{1,3,9,27,81}

{1,2,41,82}

{1,83}

{1,2,3,4,6,7,12,14,21,28,42,84}

{1,5,17,85}

{1,2,43,86}

{1,3,29,87}

{1,2,4,8,11,22,44,88}

{1,89}

{1,2,3,5,6,9,10,15,18,30,45,90}

{1,7,13,91}

{1,2,4,23,46,92}

{1,3,31,93}

{1,2,47,94}

{1,5,19,95}

{1,2,3,4,6,8,12,16,24,32,48,96}

{1,97}

{1,2,7,14,49,98}

{1,3,9,11,33,99}

 

4

2

6

2

4

4

5

2

6

2

6

4

4

2

8

3

4

4

6

2

8

2

6

4

4

4

9

2

4

4

8

2

8

2

6

6

4

2

10

3

6

4

6

2

8

4

8

4

4

2

12

2

4

6

7

4

8

2

6

4

8

2

12

2

4

6

6

4

8

2

10

5

4

2

12

4

4

4

8

2

12

4

6

4

4

4

12

2

6

6

 

8

1

16

1

10

9

15

1

21

1

22

11

14

1

36

6

16

13

28

1

42

1

31

15

20

13

55

1

22

17

50

1

54

1

40

33

26

1

76

8

43

21

46

1

66

17

64

23

32

1

108

1

34

41

63

19

78

1

58

27

74

1

123

1

40

49

64

19

90

1

106

40

44

1

140

23

46

33

92

1

144

21

76

35

50

25

156

1

73

57

 

 

N

Facteurs

Diviseurs

Quantité

Somme'

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

 

(2)^2*(5)^2

(101)

(2)*(3)*(17)

(103)

(2)^3*(13)

(3)*(5)*(7)

(2)*(53)

(107)

(2)^2*(3)^3

(109)

(2)*(5)*(11)

(3)*(37)

(2)^4*(7)

(113)

(2)*(3)*(19)

(5)*(23)

(2)^2*(29)

(3)^2*(13)

(2)*(59)

(7)*(17)

(2)^3*(3)*(5)

(11)^2

(2)*(61)

(3)*(41)

(2)^2*(31)

(5)^3

(2)*(3)^2*(7)

(127)

(2)^7

(3)*(43)

(2)*(5)*(13)

(131)

(2)^2*(3)*(11)

(7)*(19)

(2)*(67)

(3)^3*(5)

(2)^3*(17)

(137)

(2)*(3)*(23)

(139)

(2)^2*(5)*(7)

(3)*(47)

(2)*(71)

(11)*(13)

(2)^4*(3)^2

(5)*(29)

(2)*(73)

(3)*(7)^2

(2)^2*(37)

(149)

(2)*(3)*(5)^2

(151)

(2)^3*(19)

(3)^2*(17)

(2)*(7)*(11)

(5)*(31)

(2)^2*(3)*(13)

(157)

(2)*(79)

(3)*(53)

(2)^5*(5)

(7)*(23)

(2)*(3)^4

(163)

(2)^2*(41)

(3)*(5)*(11)

(2)*(83)

(167)

(2)^3*(3)*(7)

(13)^2

(2)*(5)*(17)

(3)^2*(19)

(2)^2*(43)

(173)

(2)*(3)*(29)

(5)^2*(7)

(2)^4*(11)

(3)*(59)

(2)*(89)

(179)

(2)^2*(3)^2*(5)

(181)

(2)*(7)*(13)

(3)*(61)

(2)^3*(23)

(5)*(37)

(2)*(3)*(31)

(11)*(17)

(2)^2*(47)

(3)^3*(7)

(2)*(5)*(19)

(191)

(2)^6*(3)

(193)

(2)*(97)

(3)*(5)*(13)

(2)^2*(7)^2

(197)

(2)*(3)^2*(11)

(199)

 

{1,2,4,5,10,20,25,50,100}

{1,101}

{1,2,3,6,17,34,51,102}

{1,103}

{1,2,4,8,13,26,52,104}

{1,3,5,7,15,21,35,105}

{1,2,53,106}

{1,107}

{1,2,3,4,6,9,12,18,27,36,54,108}

{1,109}

{1,2,5,10,11,22,55,110}

{1,3,37,111}

{1,2,4,7,8,14,16,28,56,112}

{1,113}

{1,2,3,6,19,38,57,114}

{1,5,23,115}

{1,2,4,29,58,116}

{1,3,9,13,39,117}

{1,2,59,118}

{1,7,17,119}

{1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}

{1,11,121}

{1,2,61,122}

{1,3,41,123}

{1,2,4,31,62,124}

{1,5,25,125}

{1,2,3,6,7,9,14,18,21,42,63,126}

{1,127}

{1,2,4,8,16,32,64,128}

{1,3,43,129}

{1,2,5,10,13,26,65,130}

{1,131}

{1,2,3,4,6,11,12,22,33,44,66,132}

{1,7,19,133}

{1,2,67,134}

{1,3,5,9,15,27,45,135}

{1,2,4,8,17,34,68,136}

{1,137}

{1,2,3,6,23,46,69,138}

{1,139}

{1,2,4,5,7,10,14,20,28,35,70,140}

{1,3,47,141}

{1,2,71,142}

{1,11,13,143}

{1,2,3,4,6,8,9,12,16,18,24,36,48,72,144}

{1,5,29,145}

{1,2,73,146}

{1,3,7,21,49,147}

{1,2,4,37,74,148}

{1,149}

{1,2,3,5,6,10,15,25,30,50,75,150}

{1,151}

{1,2,4,8,19,38,76,152}

{1,3,9,17,51,153}

{1,2,7,11,14,22,77,154}

{1,5,31,155}

{1,2,3,4,6,12,13,26,39,52,78,156}

{1,157}

{1,2,79,158}

{1,3,53,159}

{1,2,4,5,8,10,16,20,32,40,80,160}

{1,7,23,161}

{1,2,3,6,9,18,27,54,81,162}

{1,163}

{1,2,4,41,82,164}

{1,3,5,11,15,33,55,165}

{1,2,83,166}

{1,167}

{1,2,3,4,6,7,8,12,14,21,24,28,42,56,84,168}

{1,13,169}

{1,2,5,10,17,34,85,170}

{1,3,9,19,57,171}

{1,2,4,43,86,172}

{1,173}

{1,2,3,6,29,58,87,174}

{1,5,7,25,35,175}

{1,2,4,8,11,16,22,44,88,176}

{1,3,59,177}

{1,2,89,178}

{1,179}

{1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180}

{1,181}

{1,2,7,13,14,26,91,182}

{1,3,61,183}

{1,2,4,8,23,46,92,184}

{1,5,37,185}

{1,2,3,6,31,62,93,186}

{1,11,17,187}

{1,2,4,47,94,188}

{1,3,7,9,21,27,63,189}

{1,2,5,10,19,38,95,190}

{1,191}

{1,2,3,4,6,8,12,16,24,32,48,64,96,192}

{1,193}

{1,2,97,194}

{1,3,5,13,15,39,65,195}

{1,2,4,7,14,28,49,98,196}

{1,197}

{1,2,3,6,9,11,18,22,33,66,99,198}

{1,199}

 

9

2

8

2

8

8

4

2

12

2

8

4

10

2

8

4

6

6

4

4

16

3

4

4

6

4

12

2

8

4

8

2

12

4

4

8

8

2

8

2

12

4

4

4

15

4

4

6

6

2

12

2

8

6

8

4

12

2

4

4

12

4

10

2

6

8

4

2

16

3

8

6

6

2

8

6

10

4

4

2

18

2

8

4

8

4

8

4

6

8

8

2

14

2

4

8

9

2

12

2

 

117

1

114

1

106

87

56

1

172

1

106

41

136

1

126

29

94

65

62

25

240

12

64

45

100

31

186

1

127

47

122

1

204

27

70

105

134

1

150

1

196

51

74

25

259

35

76

81

118

1

222

1

148

81

134

37

236

1

82

57

218

31

201

1

130

123

86

1

312

14

154

89

136

1

186

73

196

63

92

1

366

1

154

65

176

43

198

29

148

131

170

1

316

1

100

141

203

1

270

1

 

 

 

 

Facteurs

Diviseurs

Quantité

Somme'

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

 

(2)^3*(5)^2

(3)*(67)

(2)*(101)

(7)*(29)

(2)^2*(3)*(17)

(5)*(41)

(2)*(103)

(3)^2*(23)

(2)^4*(13)

(11)*(19)

(2)*(3)*(5)*(7)

(211)

(2)^2*(53)

(3)*(71)

(2)*(107)

(5)*(43)

(2)^3*(3)^3

(7)*(31)

(2)*(109)

(3)*(73)

(2)^2*(5)*(11)

(13)*(17)

(2)*(3)*(37)

(223)

(2)^5*(7)

(3)^2*(5)^2

(2)*(113)

(227)

(2)^2*(3)*(19)

(229)

(2)*(5)*(23)

(3)*(7)*(11)

(2)^3*(29)

(233)

(2)*(3)^2*(13)

(5)*(47)

(2)^2*(59)

(3)*(79)

(2)*(7)*(17)

(239)

(2)^4*(3)*(5)

(241)

(2)*(11)^2

(3)^5

(2)^2*(61)

(5)*(7)^2

(2)*(3)*(41)

(13)*(19)

(2)^3*(31)

(3)*(83)

(2)*(5)^3

(251)

(2)^2*(3)^2*(7)

(11)*(23)

(2)*(127)

(3)*(5)*(17)

(2)^8

(257)

(2)*(3)*(43)

(7)*(37)

(2)^2*(5)*(13)

(3)^2*(29)

(2)*(131)

(263)

(2)^3*(3)*(11)

(5)*(53)

(2)*(7)*(19)

(3)*(89)

(2)^2*(67)

(269)

(2)*(3)^3*(5)

(271)

(2)^4*(17)

(3)*(7)*(13)

(2)*(137)

(5)^2*(11)

(2)^2*(3)*(23)

(277)

(2)*(139)

(3)^2*(31)

(2)^3*(5)*(7)

(281)

(2)*(3)*(47)

(283)

(2)^2*(71)

(3)*(5)*(19)

(2)*(11)*(13)

(7)*(41)

(2)^5*(3)^2

(17)^2

(2)*(5)*(29)

(3)*(97)

(2)^2*(73)

(293)

(2)*(3)*(7)^2

(5)*(59)

(2)^3*(37)

(3)^3*(11)

(2)*(149)

(13)*(23)

 

{1,2,4,5,8,10,20,25,40,50,100,200}

{1,3,67,201}

{1,2,101,202}

{1,7,29,203}

{1,2,3,4,6,12,17,34,51,68,102,204}

{1,5,41,205}

{1,2,103,206}

{1,3,9,23,69,207}

{1,2,4,8,13,16,26,52,104,208}

{1,11,19,209}

{1,2,3,5,6,7,10,14,15,21,30,35,42,70,105,210}

{1,211}

{1,2,4,53,106,212}

{1,3,71,213}

{1,2,107,214}

{1,5,43,215}

{1,2,3,4,6,8,9,12,18,24,27,36,54,72,108,216}

{1,7,31,217}

{1,2,109,218}

{1,3,73,219}

{1,2,4,5,10,11,20,22,44,55,110,220}

{1,13,17,221}

{1,2,3,6,37,74,111,222}

{1,223}

{1,2,4,7,8,14,16,28,32,56,112,224}

{1,3,5,9,15,25,45,75,225}

{1,2,113,226}

{1,227}

{1,2,3,4,6,12,19,38,57,76,114,228}

{1,229}

{1,2,5,10,23,46,115,230}

{1,3,7,11,21,33,77,231}

{1,2,4,8,29,58,116,232}

{1,233}

{1,2,3,6,9,13,18,26,39,78,117,234}

{1,5,47,235}

{1,2,4,59,118,236}

{1,3,79,237}

{1,2,7,14,17,34,119,238}

{1,239}

{1,2,3,4,5,6,8,10,12,15,16,20,24,30,40,48,60,80,120,240}

{1,241}

{1,2,11,22,121,242}

{1,3,9,27,81,243}

{1,2,4,61,122,244}

{1,5,7,35,49,245}

{1,2,3,6,41,82,123,246}

{1,13,19,247}

{1,2,4,8,31,62,124,248}

{1,3,83,249}

{1,2,5,10,25,50,125,250}

{1,251}

{1,2,3,4,6,7,9,12,14,18,21,28,36,42,63,84,126,252}

{1,11,23,253}

{1,2,127,254}

{1,3,5,15,17,51,85,255}

{1,2,4,8,16,32,64,128,256}

{1,257}

{1,2,3,6,43,86,129,258}

{1,7,37,259}

{1,2,4,5,10,13,20,26,52,65,130,260}

{1,3,9,29,87,261}

{1,2,131,262}

{1,263}

{1,2,3,4,6,8,11,12,22,24,33,44,66,88,132,264}

{1,5,53,265}

{1,2,7,14,19,38,133,266}

{1,3,89,267}

{1,2,4,67,134,268}

{1,269}

{1,2,3,5,6,9,10,15,18,27,30,45,54,90,135,270}

{1,271}

{1,2,4,8,16,17,34,68,136,272}

{1,3,7,13,21,39,91,273}

{1,2,137,274}

{1,5,11,25,55,275}

{1,2,3,4,6,12,23,46,69,92,138,276}

{1,277}

{1,2,139,278}

{1,3,9,31,93,279}

{1,2,4,5,7,8,10,14,20,28,35,40,56,70,140,280}

{1,281}

{1,2,3,6,47,94,141,282}

{1,283}

{1,2,4,71,142,284}

{1,3,5,15,19,57,95,285}

{1,2,11,13,22,26,143,286}

{1,7,41,287}

{1,2,3,4,6,8,9,12,16,18,24,32,36,48,72,96,144,288}

{1,17,289}

{1,2,5,10,29,58,145,290}

{1,3,97,291}

{1,2,4,73,146,292}

{1,293}

{1,2,3,6,7,14,21,42,49,98,147,294}

{1,5,59,295}

{1,2,4,8,37,74,148,296}

{1,3,9,11,27,33,99,297}

{1,2,149,298}

{1,13,23,299}

 

12

4

4

4

12

4

4

6

10

4

16

2

6

4

4

4

16

4

4

4

12

4

8

2

12

9

4

2

12

2

8

8

8

2

12

4

6

4

8

2

20

2

6

6

6

6

8

4

8

4

8

2

18

4

4

8

9

2

8

4

12

6

4

2

16

4

8

4

6

2

16

2

10

8

4

6

12

2

4

6

16

2

8

2

6

8

8

4

18

3

8

4

6

2

12

4

8

8

4

4

 

265

71

104

37

300

47

106

105

226

31

366

1

166

75

110

49

384

39

112

77

284

31

234

1

280

178

116

1

332

1

202

153

218

1

312

53

184

83

194

1

504

1

157

121

190

97

258

33

232

87

218

1

476

35

130

177

255

1

270

45

328

129

134

1

456

59

214

93

208

1

450

1

286

175

140

97

396

1

142

137

440

1

294

1

220

195

218

49

531

18

250

101

226

1

390

65

274

183

152

37

 

 

 

 

Suite

*         De 300 à 1000

Voir

*         TablesIndex

DicoNombre

*         Orientation vers tous les nombres du dictionnaire

Site

*         OEIS A088076 – Smallest prime sandwiched between two numbers having exactly n prime divisors

*         OEIS A088075 – Smallest number sandwiched between two numbers having exactly n prime divisors.

Cette page

http://villemin.gerard.free.fr/TABLES/Facteurs.htm