Définition |
Science qui étudie les
propriétés géométriques invariantes d'un objet quand celui-ci est étiré, tordu ou
rétréci de manière continue.
Science qui étudie les
propriétés géométriques invariantes sous l'effet de transformations biunivoques
continues. |
Analogies |
On peut imaginer les objets
topologiques fabriqués en plastique mou et déformables à souhait Sans déchirement, Sans collages avec superpositions.
Opération semblable au procédé
vidéo, appelé morphing, qui fait
passer d'un objet à un autre par déformation progressive. |
Propriétés |
En topologie, les distances
n'existent pas: Cercle et ellipse sont équivalents comme sphère et ellipsoïde, Une surface plane équivaut à une surface ondulée, pliée, tordue, Une sphère lisse à une sphère bosselée, Un tore, une chambre à air, un donut (doughnut), une tasse sont équivalents.
Mais, un cercle est un
ensemble de points particuliers Si un seul point est retiré ce n'est plus un
cercle mais un segment de droite. |
But |
Donner un sens aux notions
intuitives de voisinage, continuité, limite …
Classer les ensembles de
points qui forment des objets réels ou qui sont objets mathématiques plus généraux.
Définir des notions
fondamentales comme: ouvert et fermé compact, adhérent, accumulation convergence, connexité …
Étudier les liens entre espaces
topologiques et espaces métrisables … |
Maths |
Un espace topologique est un ensemble E
d'éléments appelés points, auquel
est associée une famille de sous-ensembles de E appelés
ouverts, satisfaisant aux trois
axiomes de la topologie:
E et l'ensemble vide sont des ouverts.
Toute réunion d'ouverts est
un ouvert.
L'intersection d'un nombre
limité d'ouverts est un ouvert. Voir Espace de Hilbert – Topologie |
Types |
Topologie
algébrique Utilisation de procédés algébriques pour résoudre les problèmes de
topologie. Géométrie de la feuille de caoutchouc (rubber-sheet geometry). Topologie qui finalement s'intéresse beaucoup aux objets à trous
(sphère, tore, bretzel …).
Topologie
ensembliste (ou topologie) Elle a pour origine l'analyse réelle: propriété d'ensembles de points sans faire appel à l'algèbre mais à des propriétés de voisinage. |
Origine |
Du grec topos lieu et logos
étude.
Autrefois, topologie était
synonyme de "géométrie de position".
La topologie était appelée:
"analyse de
situation" (analysis situs) |
TOPOLOGY The concept of topological space grew out of the study of the real
line and Euclidean space, and the study of continuous functions of these
spaces.
open and closed sets. limit points.
continuous
functions. The concept of a topological space that is now standard was a long
time in being formulated. |
En savoir plus |
Topologie – Index
Topologie
– Introduction |
Et aussi |
Poincaré – Conjecture |
Jeux |
|
Cette page |
http://villemin.gerard.free.fr/Referenc/Vocabula/GlosT/Topologi.htm
|