Édition du: 21/12/2021 |
INDEX |
Tables – Puissances |
|||
Nombres binomiaux an + bn et an – bn TABLES Nombres de Cunningham
généralisés (ou nombres binomiaux): nombres à égaux à la somme de deux
nombres à la même puissance. Avec (a, b et n) > 1. Les triplets
de Pythagore sont un cas particulier de ces nombres binomiaux. |
||
|
Sommaire de cette page >>>
C+ >>>
C- >>>
Table pour a et b de 2 à 10 et n de 2 à 5 >>>
Nombres binomiaux (C+ et C-) jusqu'à 1000 >>>
Sommes en 2a + 3b et autres |
Débutants Glossaire |
Lecture: [8,
2, 2, 2, f, 2^3] => 8 = 2² + 2² et sa
factorisation est 2^3 = 23 [8, 2, 2, 2, f, 2^3],
[13, 2, 3, 2, f, 13], [16, 3, 2, 2, f, 2^4], [18, 2, 3, 3, f, 2*3^2], [20, 2,
4, 2, f, 5*2^2], [25, 2, 4, 3, f, 5^2], [29, 2, 5, 2, f, 29], [32, 2, 4, 4,
f, 2^5], [32, 4, 2, 2, f, 2^5], [34, 2, 5, 3, f, 2*17], [35, 3, 3, 2, f,
5*7], [40, 2, 6, 2, f, 5*2^3], [41, 2, 5, 4, f, 41], [45, 2, 6, 3, f, 5*3^2],
[50, 2, 5, 5, f, 2*5^2], [52, 2, 6, 4, f, 13*2^2], [53, 2, 7, 2, f, 53], [54,
3, 3, 3, f, 2*3^3], [58, 2, 7, 3, f, 2*29], [61, 2, 6, 5, f, 61], [64, 5, 2,
2, f, 2^6], [65, 2, 7, 4, f, 5*13], [68, 2, 8, 2, f, 17*2^2], [72, 2, 6, 6,
f, 2^3*3^2], [72, 3, 4, 2, f, 2^3*3^2], [73, 2, 8, 3, f, 73], [74, 2, 7, 5,
f, 2*37], [80, 2, 8, 4, f, 5*2^4], [85, 2, 7, 6, f, 5*17], [85, 2, 9, 2, f,
5*17], [89, 2, 8, 5, f, 89], [90, 2, 9, 3, f, 2*3^2*5], [91, 3, 4, 3, f,
7*13], [97, 2, 9, 4, f, 97], [97, 4, 3, 2, f, 97], [98, 2, 7, 7, f, 2*7^2],
[100, 2, 8, 6, f, 2^2*5^2], … |
Voir Cubes
= Somme de cubes / Sommes
de cubes – Nombres Taxicab
Lecture: [5, 2, 3, 2, f, 5] => 8 = 3²
– 2² et sa factorisation est 5, il est
premier. [5, 2, 3, 2, f, 5], [7, 2, 4, 3, f, 7], [9, 2, 5,
4, f, 3^2], [11, 2, 6, 5, f, 11], [12, 2, 4, 2, f, 3*2^2], [13, 2, 7, 6, f,
13], [15, 2, 8, 7, f, 3*5], [16, 2, 5, 3, f, 2^4], [17, 2, 9, 8, f, 17], [19,
2, 10, 9, f, 19], [19, 3, 3, 2, f, 19], [20, 2, 6, 4, f, 5*2^2], [21, 2, 5,
2, f, 3*7], [21, 2, 11, 10, f, 3*7], [23, 2, 12, 11, f, 23], [24, 2, 7, 5, f,
3*2^3], [25, 2, 13, 12, f, 5^2], [27, 2, 6, 3, f, 3^3], [27, 2, 14, 13, f,
3^3], [28, 2, 8, 6, f, 7*2^2], [29, 2, 15, 14, f, 29], [31, 2, 16, 15, f,
31], [32, 2, 6, 2, f, 2^5], [32, 2, 9, 7, f, 2^5], [33, 2, 7, 4, f, 3*11],
[33, 2, 17, 16, f, 3*11], [35, 2, 18, 17, f, 5*7], [36, 2, 10, 8, f,
2^2*3^2], [37, 2, 19, 18, f, 37], [37, 3, 4, 3, f, 37], [39, 2, 8, 5, f,
3*13], [39, 2, 20, 19, f, 3*13], [40, 2, 7, 3, f, 5*2^3], [40, 2, 11, 9, f,
5*2^3], [41, 2, 21, 20, f, 41], [43, 2, 22, 21, f, 43], [44, 2, 12, 10, f,
11*2^2], [45, 2, 7, 2, f, 5*3^2], [45, 2, 9, 6, f, 5*3^2], [45, 2, 23, 22, f,
5*3^2], [47, 2, 24, 23, f, 47], [48, 2, 8, 4, f, 3*2^4], [48, 2, 13, 11, f,
3*2^4], [49, 2, 25, 24, f, 7^2], [51, 2, 10, 7, f, 3*17], [51, 2, 26, 25, f,
3*17], [52, 2, 14, 12, f, 13*2^2], [53, 2, 27, 26, f, 53], [55, 2, 8, 3, f,
5*11], [55, 2, 28, 27, f, 5*11], [56, 2, 9, 5, f, 7*2^3], [56, 2, 15, 13, f,
7*2^3], [56, 3, 4, 2, f, 7*2^3], [57, 2, 11, 8, f, 3*19], [57, 2, 29, 28, f,
3*19], [59, 2, 30, 29, f, 59], [60, 2, 8, 2, f, 3*2^2*5], [60, 2, 16, 14, f,
3*2^2*5], [61, 2, 31, 30, f, 61], [61, 3, 5, 4, f, 61], [63, 2, 12, 9, f,
7*3^2], [63, 2, 32, 31, f, 7*3^2], [64, 2, 10, 6, f, 2^6], [64, 2, 17, 15, f,
2^6], [65, 2, 9, 4, f, 5*13], [65, 2, 33, 32, f, 5*13], [65, 4, 3, 2, f,
5*13], [67, 2, 34, 33, f, 67], [68, 2, 18, 16, f, 17*2^2], [69, 2, 13, 10, f,
3*23], [69, 2, 35, 34, f, 3*23], [71, 2, 36, 35, f, 71], [72, 2, 9, 3, f,
2^3*3^2], [72, 2, 11, 7, f, 2^3*3^2], [72, 2, 19, 17, f, 2^3*3^2], [73, 2,
37, 36, f, 73], [75, 2, 10, 5, f, 3*5^2], [75, 2, 14, 11, f, 3*5^2], [75, 2,
38, 37, f, 3*5^2], [76, 2, 20, 18, f, 19*2^2], [77, 2, 9, 2, f, 7*11], [77,
2, 39, 38, f, 7*11], [79, 2, 40, 39, f, 79], [80, 2, 12, 8, f, 5*2^4], [80,
2, 21, 19, f, 5*2^4], [81, 2, 15, 12, f, 3^4], [81, 2, 41, 40, f, 3^4], [83,
2, 42, 41, f, 83], [84, 2, 10, 4, f, 3*2^2*7], [84, 2, 22, 20, f, 3*2^2*7],
[85, 2, 11, 6, f, 5*17], [85, 2, 43, 42, f, 5*17], [87, 2, 16, 13, f, 3*29],
[87, 2, 44, 43, f, 3*29], [88, 2, 13, 9, f, 11*2^3], [88, 2, 23, 21, f,
11*2^3], [89, 2, 45, 44, f, 89], [91, 2, 10, 3, f, 7*13], [91, 2, 46, 45, f,
7*13], [91, 3, 6, 5, f, 7*13], [92, 2, 24, 22, f, 23*2^2], [93, 2, 17, 14, f,
3*31], [93, 2, 47, 46, f, 3*31], [95, 2, 12, 7, f, 5*19], [95, 2, 48, 47, f,
5*19], [96, 2, 10, 2, f, 3*2^5], [96, 2, 11, 5, f, 3*2^5], [96, 2, 14, 10, f,
3*2^5], [96, 2, 25, 23, f, 3*2^5], [97, 2, 49, 48, f, 97], [98, 3, 5, 3, f,
2*7^2], [99, 2, 18, 15, f, 11*3^2], [99, 2, 50, 49, f, 11*3^2], [100, 2, 26,
24, f, 2^2*5^2], … |
Table pour a et b de 2 à 10 et n de 2 à 5
a |
b |
n |
an + bn |
an – bn |
||
3 |
2 |
2 |
13 |
13 |
5 |
5 |
3 |
2 |
3 |
35 |
5×7 |
19 |
19 |
3 |
2 |
4 |
97 |
97 |
65 |
5×13 |
3 |
2 |
5 |
275 |
52×11 |
211 |
211 |
4 |
2 |
2 |
20 |
22×5 |
12 |
22×3 |
4 |
2 |
3 |
72 |
23×3^2 |
56 |
23×7 |
4 |
2 |
4 |
272 |
24×17 |
240 |
24×3×5 |
4 |
2 |
5 |
1056 |
25×3×11 |
992 |
25×31 |
4 |
3 |
2 |
25 |
52 |
7 |
7 |
4 |
3 |
3 |
91 |
7×13 |
37 |
37 |
4 |
3 |
4 |
337 |
337 |
175 |
52×7 |
4 |
3 |
5 |
1267 |
7×181 |
781 |
11×71 |
5 |
2 |
2 |
29 |
29 |
21 |
3×7 |
5 |
2 |
3 |
133 |
7×19 |
117 |
32×13 |
5 |
2 |
4 |
641 |
641 |
609 |
3×7×29 |
5 |
2 |
5 |
3157 |
7×11×41 |
3093 |
3×1031 |
5 |
3 |
2 |
34 |
2×17 |
16 |
24 |
5 |
3 |
3 |
152 |
23×19 |
98 |
2×72 |
5 |
3 |
4 |
706 |
2×353 |
544 |
25×17 |
5 |
3 |
5 |
3368 |
23×421 |
2882 |
2×11×131 |
5 |
4 |
2 |
41 |
41 |
9 |
32 |
5 |
4 |
3 |
189 |
33×7 |
61 |
61 |
5 |
4 |
4 |
881 |
881 |
369 |
32×41 |
5 |
4 |
5 |
4149 |
32×461 |
2101 |
11×191 |
6 |
2 |
2 |
40 |
23×5 |
32 |
25 |
6 |
2 |
3 |
224 |
25×7 |
208 |
24×13 |
6 |
2 |
4 |
1312 |
25×41 |
1280 |
28×5 |
6 |
2 |
5 |
7808 |
27×61 |
7744 |
26×112 |
6 |
3 |
2 |
45 |
32×5 |
27 |
33 |
6 |
3 |
3 |
243 |
35 |
189 |
33×7 |
6 |
3 |
4 |
1377 |
34×17 |
1215 |
35×5 |
6 |
3 |
5 |
8019 |
36×11 |
7533 |
35×31 |
6 |
4 |
2 |
52 |
22×13 |
20 |
22×5 |
6 |
4 |
3 |
280 |
23×5×7 |
152 |
23×19 |
6 |
4 |
4 |
1552 |
24×97 |
1040 |
24×5×13 |
6 |
4 |
5 |
8800 |
25×52×11 |
6752 |
25×211 |
6 |
5 |
2 |
61 |
61 |
11 |
11 |
6 |
5 |
3 |
341 |
11×31 |
91 |
7×13 |
6 |
5 |
4 |
1921 |
17×113 |
671 |
11×61 |
6 |
5 |
5 |
10901 |
11×991 |
4651 |
4651 |
7 |
2 |
2 |
53 |
53 |
45 |
32×5 |
7 |
2 |
3 |
351 |
33×13 |
335 |
5×67 |
7 |
2 |
4 |
2417 |
2417 |
2385 |
32×5×53 |
7 |
2 |
5 |
16839 |
32×1871 |
16775 |
52×11×61 |
7 |
3 |
2 |
58 |
2×29 |
40 |
23×5 |
7 |
3 |
3 |
370 |
2×5×37 |
316 |
22×79 |
7 |
3 |
4 |
2482 |
2×17×73 |
2320 |
24×5×29 |
7 |
3 |
5 |
17050 |
2×52×11×31 |
16564 |
22×41×101 |
7 |
4 |
2 |
65 |
5×13 |
33 |
3×11 |
7 |
4 |
3 |
407 |
11×37 |
279 |
32×31 |
7 |
4 |
4 |
2657 |
2657 |
2145 |
3×5×11×13 |
7 |
4 |
5 |
17831 |
11×1621 |
15783 |
3×5261 |
7 |
5 |
2 |
74 |
2×37 |
24 |
23×3 |
7 |
5 |
3 |
468 |
22×32×13 |
218 |
2×109 |
7 |
5 |
4 |
3026 |
2×17×89 |
1776 |
24×3×37 |
7 |
5 |
5 |
19932 |
22×3×11×151 |
13682 |
2×6841 |
7 |
6 |
2 |
85 |
5×17 |
13 |
13 |
7 |
6 |
3 |
559 |
13×43 |
127 |
127 |
7 |
6 |
4 |
3697 |
3697 |
1105 |
5×13×17 |
7 |
6 |
5 |
24583 |
13×31×61 |
9031 |
11×821 |
8 |
2 |
2 |
68 |
22×17 |
60 |
22×3×5 |
8 |
2 |
3 |
520 |
23×5×13 |
504 |
23×32×7 |
8 |
2 |
4 |
4112 |
24×257 |
4080 |
24×3×5×17 |
8 |
2 |
5 |
32800 |
25×52×41 |
32736 |
25×3×11×31 |
8 |
3 |
2 |
73 |
73 |
55 |
5×11 |
8 |
3 |
3 |
539 |
72×11 |
485 |
5×97 |
8 |
3 |
4 |
4177 |
4177 |
4015 |
5×11×73 |
8 |
3 |
5 |
33011 |
11×3001 |
32525 |
52×1301 |
8 |
4 |
2 |
80 |
24×5 |
48 |
24×3 |
8 |
4 |
3 |
576 |
26×32 |
448 |
26×7 |
8 |
4 |
4 |
4352 |
28×17 |
3840 |
28×3×5 |
8 |
4 |
5 |
33792 |
210×3×11 |
31744 |
210×31 |
8 |
5 |
2 |
89 |
89 |
39 |
3×13 |
8 |
5 |
3 |
637 |
72×13 |
387 |
32×43 |
8 |
5 |
4 |
4721 |
4721 |
3471 |
3×13×89 |
8 |
5 |
5 |
35893 |
11×13×251 |
29643 |
3×41×241 |
8 |
6 |
2 |
100 |
22×52 |
28 |
22×7 |
8 |
6 |
3 |
728 |
23×7×13 |
296 |
23×37 |
8 |
6 |
4 |
5392 |
24×337 |
2800 |
24×52×7 |
8 |
6 |
5 |
40544 |
25×7×181 |
24992 |
25×11×71 |
8 |
7 |
2 |
113 |
113 |
15 |
3×5 |
8 |
7 |
3 |
855 |
32×5×19 |
169 |
132 |
8 |
7 |
4 |
6497 |
73×89 |
1695 |
3×5×113 |
8 |
7 |
5 |
49575 |
3×52×661 |
15961 |
11×1451 |
9 |
2 |
2 |
85 |
5×17 |
77 |
7×11 |
9 |
2 |
3 |
737 |
11×67 |
721 |
7×103 |
9 |
2 |
4 |
6577 |
6577 |
6545 |
5×7×11×17 |
9 |
2 |
5 |
59081 |
11×41×131 |
59017 |
7×8431 |
9 |
3 |
2 |
90 |
2×32×5 |
72 |
23×32 |
9 |
3 |
3 |
756 |
22×33×7 |
702 |
2×33×13 |
9 |
3 |
4 |
6642 |
2×34×41 |
6480 |
24×34×5 |
9 |
3 |
5 |
59292 |
22×35×61 |
58806 |
2×35×112 |
9 |
4 |
2 |
97 |
97 |
65 |
5×13 |
9 |
4 |
3 |
793 |
13×61 |
665 |
5×7×19 |
9 |
4 |
4 |
6817 |
17×401 |
6305 |
5×13×97 |
9 |
4 |
5 |
60073 |
13×4621 |
58025 |
52×11×211 |
9 |
5 |
2 |
106 |
2×53 |
56 |
23×7 |
9 |
5 |
3 |
854 |
2×7×61 |
604 |
22×151 |
9 |
5 |
4 |
7186 |
2×3593 |
5936 |
24×7×53 |
9 |
5 |
5 |
62174 |
2×7×4441 |
55924 |
22×11×31×41 |
9 |
6 |
2 |
117 |
32×13 |
45 |
32×5 |
9 |
6 |
3 |
945 |
33×5×7 |
513 |
33×19 |
9 |
6 |
4 |
7857 |
34×97 |
5265 |
34×5×13 |
9 |
6 |
5 |
66825 |
35×52×11 |
51273 |
35×211 |
9 |
7 |
2 |
130 |
2×5×13 |
32 |
26 |
9 |
7 |
3 |
1072 |
24×67 |
386 |
2×193 |
9 |
7 |
4 |
8962 |
2×4481 |
4160 |
26×5×13 |
9 |
7 |
5 |
75856 |
2^4×11×431 |
42242 |
2×21121 |
9 |
8 |
2 |
145 |
5×29 |
17 |
17 |
9 |
8 |
3 |
1241 |
17×73 |
217 |
7×31 |
9 |
8 |
4 |
10657 |
10657 |
2465 |
5×17×29 |
9 |
8 |
5 |
91817 |
11×17×491 |
26281 |
41×641 |
10 |
2 |
2 |
104 |
2^3×13 |
96 |
2^5×3 |
10 |
2 |
3 |
1008 |
24×32×7 |
992 |
25×31 |
10 |
2 |
4 |
10016 |
25×313 |
9984 |
28×3×13 |
10 |
2 |
5 |
100032 |
26×3×521 |
99968 |
27×11×71 |
10 |
3 |
2 |
109 |
109 |
91 |
7×13 |
10 |
3 |
3 |
1027 |
13×79 |
973 |
7×139 |
10 |
3 |
4 |
10081 |
17×593 |
9919 |
7×13×109 |
10 |
3 |
5 |
100243 |
11×13×701 |
99757 |
7×14251 |
10 |
4 |
2 |
116 |
22×29 |
84 |
22×3×7 |
10 |
4 |
3 |
1064 |
23×7×19 |
936 |
23×32×13 |
10 |
4 |
4 |
10256 |
24×641 |
9744 |
24×3×7×29 |
10 |
4 |
5 |
101024 |
25×7×11×41 |
98976 |
25×3×1031 |
10 |
5 |
2 |
125 |
53 |
75 |
3×52 |
10 |
5 |
3 |
1125 |
32×53 |
875 |
53×7 |
10 |
5 |
4 |
10625 |
54×17 |
9375 |
3×55 |
10 |
5 |
5 |
103125 |
3×55×11 |
96875 |
55×31 |
10 |
6 |
2 |
136 |
23×17 |
64 |
26 |
10 |
6 |
3 |
1216 |
26×19 |
784 |
24×72 |
10 |
6 |
4 |
11296 |
25×353 |
8704 |
29×17 |
10 |
6 |
5 |
107776 |
28×421 |
92224 |
2^6×11×131 |
10 |
7 |
2 |
149 |
149 |
51 |
3×17 |
10 |
7 |
3 |
1343 |
17×79 |
657 |
32×73 |
10 |
7 |
4 |
12401 |
12401 |
7599 |
3×17×149 |
10 |
7 |
5 |
116807 |
17×6871 |
83193 |
3×11×2521 |
10 |
8 |
2 |
164 |
22×41 |
36 |
22×32 |
10 |
8 |
3 |
1512 |
23×33×7 |
488 |
23×61 |
10 |
8 |
4 |
14096 |
24×881 |
5904 |
24×32×41 |
10 |
8 |
5 |
132768 |
25×3^2×461 |
67232 |
25×11×191 |
10 |
9 |
2 |
181 |
181 |
19 |
19 |
10 |
9 |
3 |
1729 |
7×13×19 |
271 |
271 |
10 |
9 |
4 |
16561 |
16561 |
3439 |
19×181 |
10 |
9 |
5 |
159049 |
11×19×761 |
40951 |
31×1321 |
Les 495
nombres binomiaux (C+ et C-) jusqu'à 1000
5, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23,
24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 48,
51, 52, 53, 55, 56, 57, 58, 60, 61, 63, 64, 65, 68, 69, 72, 73, 74, 75, 76,
77, 80, 81, 84, 85, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 104,
105, 106, 108, 109, 111, 112, 113, 115, 116, 117, 119, 120, 123, 125, 127,
128, 129, 130, 132, 133, 135, 136, 137, 140, 144, 145, 146, 147, 148, 149,
152, 153, 155, 156, 157, 160, 161, 164, 165, 168, 169, 170, 171, 173, 175,
176, 178, 180, 181, 185, 187, 189, 192, 193, 194, 195, 200, 202, 203, 204,
205, 207, 208, 209, 211, 212, 215, 216, 217, 218, 220, 221, 224, 225, 228,
229, 231, 232, 233, 234, 240, 241, 243, 244, 245, 247, 250, 252, 253, 256,
259, 260, 261, 264, 265, 269, 272, 273, 274, 275, 277, 279, 280, 281, 285,
287, 288, 289, 290, 292, 293, 296, 297, 298, 299, 300, 301, 304, 305, 306,
308, 312, 313, 314, 315, 316, 317, 319, 320, 325, 328, 333, 335, 336, 337,
338, 340, 341, 345, 346, 349, 351, 352, 353, 356, 357, 360, 363, 364, 365,
369, 370, 373, 375, 377, 380, 384, 385, 386, 387, 388, 389, 391, 392, 394,
396, 397, 400, 403, 404, 405, 407, 408, 409, 410, 416, 420, 421, 424, 425,
429, 432, 433, 435, 436, 437, 442, 445, 448, 449, 450, 451, 452, 455, 456,
457, 458, 459, 461, 464, 465, 466, 468, 473, 475, 476, 477, 480, 481, 482,
485, 488, 490, 493, 495, 500, 504, 505, 507, 509, 512, 513, 514, 520, 521,
522, 525, 527, 530, 532, 533, 538, 539, 540, 541, 544, 545, 548, 549, 551,
554, 555, 557, 559, 560, 561, 562, 565, 567, 569, 572, 576, 578, 580, 584,
585, 586, 588, 589, 592, 593, 595, 596, 600, 601, 604, 605, 608, 609, 610,
612, 613, 615, 616, 617, 621, 625, 627, 628, 629, 634, 637, 640, 641, 648,
650, 651, 653, 656, 657, 660, 661, 663, 665, 666, 667, 672, 673, 674, 676,
680, 684, 685, 689, 692, 693, 697, 698, 701, 702, 703, 704, 706, 709, 712,
713, 720, 721, 724, 725, 728, 730, 733, 735, 737, 738, 740, 741, 745, 746,
748, 754, 756, 757, 759, 760, 761, 765, 768, 769, 772, 773, 775, 776, 777,
778, 780, 785, 788, 792, 793, 794, 797, 800, 801, 802, 805, 808, 809, 810,
816, 818, 819, 820, 821, 825, 829, 832, 833, 836, 837, 841, 845, 848, 850,
851, 853, 854, 855, 857, 864, 865, 866, 872, 873, 875, 877, 881, 884, 890,
891, 896, 898, 900, 901, 904, 905, 909, 914, 916, 922, 925, 928, 929, 932,
936, 937, 941, 945, 949, 952, 953, 954, 957, 962, 964, 965, 970, 976, 977,
980, 981, 985, 986, 997, 1000 |
Suite
de ces tables pour les grands nombres sur le site indiqué
|
|||||
Trois nombres en 2a + 3b deux
fois 11 = 21 + 32
= 23 + 31 35 = 23 + 33
= 25 + 31 259 = 28
+ 31 = 24 + 35 Un nombre en 2a + 5b deux
fois 133 =
23 + 53 = 27 + 31 |
Aucun nombre en 2a + 7b deux fois Aucun nombre en 2a + 11b
deux fois Aucun nombre en 3a + 5b deux fois Aucun nombre en 3a + 7b deux fois Aucun nombre en 3a + 11b
deux fois Aucun nombre en 5a + 7b deux fois Aucun nombre en 5a + 11b
deux fois |
||||
Cent-dix sommes DOUBLES en 2a + 3b + 5c |
|||||
|
|
|
|
||
Retour |
Nombres de Cunningham simples
Nombres de Cunningham
généralisés |
Suite |
|
Voir |
Table des puissances des nombres
Problème
de la somme des trois cubes Voir liste en Pour
s'y retrouver |
Homogeneous Cunningham Numbers – Tables des nombres de Cunningham généralisés factorisés |
|
Cette page |