Édition du: 26/04/2022 |
INDEX |
PARTITIONS |
||
Faites un double-clic pour un retour en haut de page
Partitions palindromiques Quelles sont les
sommes (partitions) d'un nombre qui peuvent s'écrire en palindrome
? Illustration avec
4 partitions palindromiques du nombre 37 Les deux premières lignes sont palindromiques
en nombres, les deux suivantes en chiffres. Il existe 21 637
partitions du nombre 37 dont 297 sont palindromiques en nombres et 68 en
chiffres sans 1 ni 2. |
||
|
Sommaire de cette page >>> Approche >>> Partitions palindromiques de n de 2 à 10 >>> Partitions palindromiques de n SANS 1 >>> Partitions de 37 |
Débutants Glossaire |
Exemple Prenons les partitions du nombre 10. Cette liste montre la suite des 42 partitions. En rouge les sommes non palindromes. En noir les 19 sommes palindromes. La somme des nombres entre crochet est 10. |
[1,
1, 1, 1, 1, 1, 1, 1, 1, 1] [1,
1, 1, 1, 2, 1, 1, 1, 1] [1,
1, 1, 2, 2,1, 1, 1] [1,
1, 2, 2, 2, 1, 1] [1,
2, 2, 2, 2, 1] [2,
2, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1, 3] [1, 1, 1, 1, 1, 2, 3] [1, 1, 1, 2, 2, 3] [1, 2, 2, 2, 3] [1,
1, 3, 3, 1, 1] [1,
3, 2, 3, 1] [2,
3, 3, 2] [1, 3, 3, 3] |
[1,
1, 1, 4, 1, 1, 1] [1, 1, 1, 1, 2, 4] [1,
2, 4, 2, 1] [2, 2, 2, 4] [1, 1, 1, 3, 4] [1, 2, 3, 4] [3,
4, 3] [1,
4, 4, 1] [4,
2, 4] [1, 1, 1, 1, 1, 5] [1, 1, 1, 2, 5] [1, 2, 2, 5] [1, 1, 3, 5] [2, 3, 5] |
[1, 4, 5] [5,
5] [1,
1, 6, 1, 1] [1, 1, 2, 6] [2, 6, 2] [1, 3, 6] [4, 6] [1, 1, 1, 7] [1, 2, 7] [3, 7] [1,
8, 1] [2, 8] [1, 9] [10] |
|
Observations |
Pour former une somme palindromique:
si la quantité de termes est paire, il faut pouvoir arranger les
nombres par couples; et
si la quantité est impaire, il faut former des couples et disposer
d'un nombre isolé, lequel prendra la position centrale. |
|||
n, p, pp |
Toutes les partitions palindromes (pp) de n parmi
les p partitions de n. On donne la liste croissante des nombres; il
suffit de les réorganiser pour constituer la somme palindrome. Ainsi, par
exemple [1, 1, 2] deviendra [1, 2, 1]. Exemple de lecture: 5, 7, 4 veut
dire que le nombre 5 a 7 partitions dont 4 sont palindromes.
|
|||
2, 2, 2 |
[1, 1] |
[2] |
|
|
3, 3, 2 |
[1, 1, 1] |
[3] |
|
|
4, 5, 4 |
[1, 1, 1, 1] [1, 1, 2] |
[2, 2] |
[4] |
|
5, 7, 4 |
[1, 1, 1, 1, 1] [1, 2, 2] |
[1, 1, 3] |
[5] |
|
6, 11, 7 |
[1, 1, 1, 1, 1,
1] [1, 1, 1, 1, 2] [1, 1, 2, 2] |
[2, 2, 2] [3, 3] |
[1, 1, 4] [6 |
|
7, 15, 7 |
[1, 1, 1, 1, 1,
1, 1] [1, 1, 1, 2, 2] [1, 1, 1, 1, 3] |
[2, 2, 3] [1, 3, 3] |
[1, 1, 5] [7] |
|
8, 22, 12 |
[1, 1, 1, 1, 1,
1, 1, 1] [1, 1, 1, 1, 1,
1, 2] [1, 1, 1, 1, 2,
2] [1, 1, 2, 2, 2] |
[2, 2, 2, 2] [1, 1, 3, 3] [2, 3, 3] [1, 1, 1, 1, 4] |
[2, 2, 4] [4, 4] [1, 1, 6] [8] |
|
9, 30, 12 |
[1, 1, 1, 1, 1,
1, 1, 1, 1] [1, 1, 1, 1, 1,
2, 2] [1, 2, 2, 2, 2] [1, 1, 1, 1, 1,
1, 3] |
[1, 1, 2, 2, 3] [1, 1, 1, 3, 3] [3, 3, 3] [1, 4, 4] |
[1, 1, 1, 1, 5] [2, 2, 5] [1, 1, 7] [9] |
|
10, 42, 19 |
[1, 1, 1, 1, 1,
1, 1, 1, 1, 1] [1, 1, 1, 1, 1,
1, 1, 1, 2] [1, 1, 1, 1, 1,
1, 2, 2] [1, 1, 1, 1, 2,
2, 2] [1, 1, 2, 2, 2,
2] [2, 2, 2, 2, 2] [1, 1, 1, 1, 3,
3] |
[1, 1, 2, 3, 3] [2, 2, 3, 3] [1, 1, 1, 1, 1,
1, 4] [1, 1, 2, 2, 4] [3, 3, 4] [1, 1, 4, 4] |
[2, 4, 4] [5, 5] [1, 1, 1, 1, 6] [2, 2, 6] [1, 1, 8] [10] |
|
Liste des triplets [n, p, pp] pour n de 2 à 69 |
[2, 2, 2], [3, 3, 2], [4, 5, 4], [5, 7, 4], [6,
11, 7], [7, 15, 7], [8, 22, 12], [9, 30, 12], [10, 42, 19], [11, 56, 19],
[12, 77, 30], [13, 101, 30], [14, 135, 45], [15, 176, 45], [16, 231, 67],
[17, 297, 67], [18, 385, 97], [19, 490, 97], [20, 627, 139], [21, 792, 139],
[22, 1002, 195], [23, 1255, 195], [24, 1575, 272], [25, 1958, 272], [26,
2436, 373], [27, 3010, 373], [28, 3718, 508], [29, 4565, 508], [30, 5604,
684], [31, 6842, 684], [32, 8349, 915], [33, 10143, 915], [34, 12310, 1212],
[35, 14883, 1212], [36, 17977, 1597], [37, 21637, 1597], [38, 26015, 2087],
[39, 31185, 2087], [40, 37338, 2714], [41, 44583, 2714], [42, 53174, 3506],
[43, 63261, 3506], [44, 75175, 4508], [45, 89134, 4508], [46, 105558, 5763],
[47, 124754, 5763], [48, 147273, 7338], [49, 173525, 7338], [50, 204226,
9296], [51, 239943, 9296], [52, 281589, 11732], [53, 329931, 11732], [54,
386155, 14742], [55, 451276, 14742], [56, 526823, 18460], [57, 614154,
18460], [58, 715220, 23025], [59, 831820, 23025], [60, 966467, 28629], [61,
1121505, 28629], [62, 1300156, 35471], [63, 1505499, 35471], [64, 1741630,
43820], [65, 2012558, 43820], [66, 2323520, 53963], [67, 2679689, 53963],
[68, 3087735, 66273], [69, 3554345, 66273] … |
|||
10, 42, 7 |
[2, 2, 2, 2, 2] [2, 2, 3, 3] [3, 3, 4] |
[2, 4, 4] [5, 5] |
[2, 2, 6] [10] |
|
11, 56, 5 |
[2, 2, 2, 2, 3] [3, 4, 4] |
[3, 3, 5] [2, 2, 7] |
[11] |
|
12, 77, 11 |
[2, 2, 2, 2, 2,
2] [2, 2, 2, 3, 3] [3, 3, 3, 3] [2, 2, 2, 2, 4] |
[2, 2, 4, 4] [4, 4, 4] [2, 5, 5] [3, 3, 6] |
[6, 6] [2, 2, 8] [12] |
|
13, 101, 7 |
[2, 2, 3, 3, 3] [2, 2, 2, 2, 5] [4, 4, 5] |
[3, 5, 5] [3, 3, 7] |
[2, 2, 9] [13] |
|
14, 135, 15 |
[2, 2, 2, 2, 2,
2, 2] [2, 2, 2, 2, 3,
3] [2, 3, 3, 3, 3] [2, 2, 3, 3, 4] [2, 2, 2, 4, 4] |
[3, 3, 4, 4] [2, 2, 5, 5] [4, 5, 5] [2, 2, 2, 2, 6] [4, 4, 6] |
[2, 6, 6] [7, 7] [3, 3, 8] [2, 2, 10] [14] |
|
15, 176, 11 |
[2, 2, 2, 2, 2,
2, 3] [3, 3, 3, 3, 3] [2, 2, 3, 4, 4] [2, 2, 3, 3, 5] |
[5, 5, 5] [3, 6, 6] [2, 2, 2, 2, 7] [4, 4, 7] |
[3, 3, 9] [2, 2, 11] [15] |
|
16, 231, 22 |
[2, 2, 2, 2, 2,
2, 2, 2] [2, 2, 2, 2, 2,
3, 3] [2, 2, 3, 3, 3,
3] [2, 2, 2, 2, 2,
2, 4] [3, 3, 3, 3, 4] [2, 2, 2, 2, 4,
4] [2, 3, 3, 4, 4] [2, 2, 4, 4, 4] |
[4, 4, 4, 4] [2, 2, 2, 5, 5] [3, 3, 5, 5] [2, 2, 3, 3, 6] [5, 5, 6] [2, 2, 6, 6] [4, 6, 6] |
[2, 7, 7] [2, 2, 2, 2, 8] [4, 4, 8] [8, 8] [3, 3, 10] [2, 2, 12] [16] |
|
17, 297, 15 |
[2, 2, 2, 2, 3,
3, 3] [3, 3, 3, 4, 4] [2, 2, 2, 2, 2,
2, 5] [3, 3, 3, 3, 5] [2, 2, 4, 4, 5] |
[2, 2, 3, 5, 5] [5, 6, 6] [2, 2, 3, 3, 7] [5, 5, 7] [3, 7, 7] |
[2, 2, 2, 2, 9] [4, 4, 9] [3, 3, 11] [2, 2, 13] [17] |
|
18, 385, 30 |
[2, 2, 2, 2, 2,
2, 2, 2, 2] [2, 2, 2, 2, 2,
2, 3, 3] [2, 2, 2, 3, 3,
3, 3] [3, 3, 3, 3, 3,
3] [2, 2, 2, 2, 3,
3, 4] [2, 2, 2, 2, 2,
4, 4] [2, 2, 3, 3, 4,
4] [3, 3, 4, 4, 4] [2, 4, 4, 4, 4] [2, 2, 2, 2, 5,
5] |
[2, 3, 3, 5, 5] [2, 2, 4, 5, 5] [4, 4, 5, 5] [2, 2, 2, 2, 2,
2, 6] [3, 3, 3, 3, 6] [2, 2, 4, 4, 6] [2, 2, 2, 6, 6] [3, 3, 6, 6] [6, 6, 6] [2, 2, 7, 7] |
[4, 7, 7] [2, 2, 3, 3, 8] [5, 5, 8] [2, 8, 8] [9, 9] [2, 2, 2, 2, 10] [4, 4, 10] [3, 3, 12] [2, 2, 14] [18] |
|
19, 490, 22 |
[2, 2, 2, 2, 2,
2, 2, 2, 3] [2, 2, 3, 3, 3,
3, 3] [2, 2, 2, 2, 3,
4, 4] [3, 4, 4, 4, 4] [2, 2, 2, 2, 3,
3, 5] [3, 3, 4, 4, 5] [3, 3, 3, 5, 5] [2, 2, 5, 5, 5] |
[2, 2, 3, 6, 6] [2, 2, 2, 2, 2,
2, 7] [3, 3, 3, 3, 7] [2, 2, 4, 4, 7] [6, 6, 7] [5, 7, 7] [3, 8, 8] |
[2, 2, 3, 3, 9] [5, 5, 9] [2, 2, 2, 2, 11] [4, 4, 11] [3, 3, 13] [2, 2, 15] [19] |
|
20, 627, 42 |
[2, 2, 2, 2, 2,
2, 2, 2, 2, 2] [2, 2, 2, 2, 2,
2, 2, 3, 3] [2, 2, 2, 2, 3,
3, 3, 3] [2, 3, 3, 3, 3,
3, 3] [2, 2, 2, 2, 2,
2, 2, 2, 4] [2, 2, 3, 3, 3,
3, 4] [2, 2, 2, 2, 2,
2, 4, 4] [2, 2, 2, 3, 3,
4, 4] [3, 3, 3, 3, 4,
4] [2, 2, 2, 2, 4,
4, 4] [2, 2, 4, 4, 4,
4] [4, 4, 4, 4, 4] [2, 2, 2, 2, 2,
5, 5] [2, 2, 3, 3, 5,
5] |
[3, 3, 4, 5, 5] [2, 4, 4, 5, 5] [5, 5, 5, 5] [2, 2, 2, 2, 3,
3, 6] [3, 3, 4, 4, 6] [2, 2, 5, 5, 6] [2, 2, 2, 2, 6,
6] [2, 3, 3, 6, 6] [2, 2, 4, 6, 6] [4, 4, 6, 6] [2, 2, 2, 7, 7] [3, 3, 7, 7] [6, 7, 7] [2, 2, 2, 2, 2,
2, 8] |
[3, 3, 3, 3, 8] [2, 2, 4, 4, 8] [6, 6, 8] [2, 2, 8, 8] [4, 8, 8] [2, 9, 9] [2, 2, 3, 3, 10] [5, 5, 10] [10, 10] [2, 2, 2, 2, 12] [4, 4, 12] [3, 3, 14] [2, 2, 16] [20] 20, 627, 42 |
|
Liste des triplets [n, p, pp1] pour n de 2 à 69 |
[2, 2, 1], [3, 3, 1], [4, 5, 2], [5, 7, 1], [6,
11, 3], [7, 15, 2], [8, 22, 5], [9, 30, 3], [10, 42, 7], [11, 56, 5], [12,
77, 11], [13, 101, 7], [14, 135, 15], [15, 176, 11], [16, 231, 22], [17, 297,
15], [18, 385, 30], [19, 490, 22], [20, 627, 42], [21, 792, 30], [22, 1002,
56], [23, 1255, 42], [24, 1575, 77], [25, 1958, 56], [26, 2436, 101], [27,
3010, 77], [28, 3718, 135], [29, 4565, 101], [30, 5604, 176], [31, 6842,
135], [32, 8349, 231], [33, 10143, 176], [34, 12310, 297], [35, 14883, 231],
[36, 17977, 385], [37, 21637, 297], [38, 26015, 490], [39, 31185, 385], [40,
37338, 627], [41, 44583, 490], [42, 53174, 792], [43, 63261, 627], [44,
75175, 1002], [45, 89134, 792], [46, 105558, 1255], [47, 124754, 1002], [48,
147273, 1575], [49, 173525, 1255], [50, 204226, 1958], [51, 239943, 1575],
[52, 281589, 2436], [53, 329931, 1958], [54, 386155, 3010], [55, 451276,
2436], [56, 526823, 3718], [57, 614154, 3010], [58, 715220, 4565], [59,
831820, 3718], [60, 966467, 5604], [61, 1121505, 4565], [62, 1300156, 6842],
[63, 1505499, 5604], [64, 1741630, 8349], [65, 2012558, 6842], [66, 2323520,
10143], [67, 2679689, 8349], [68, 3087735, 12310], [69, 3554345, 10143] |
|||
Les 23 partitions palindromiques de 37 en
chiffres sans le 1, 2 et 3 |
[4, 4, 4, 4, 4,
4, 4, 4, 5] [5, 5, 5, 5, 5,
6, 6] [4, 4, 5, 6, 6,
6, 6] [5, 5, 5, 5, 5,
5, 7] [4, 4, 5, 5, 6,
6, 7] [4, 4, 5, 5, 5,
7, 7] [4, 4, 4, 4, 7,
7, 7] [4, 4, 4, 4, 5,
8, 8] |
[7, 7, 7, 8, 8] [5, 8, 8, 8, 8] [4, 4, 5, 5, 5,
5, 9] [4, 4, 4, 4, 6,
6, 9] [7, 7, 7, 7, 9] [6, 6, 8, 8, 9] [6, 6, 7, 9, 9] [5, 7, 7, 9, 9] |
[5, 5, 9, 9, 9] [4, 4, 4, 4, 5,
5, 11] [6, 6, 7, 7, 11] [5, 5, 8, 8, 11] [4, 4, 9, 9, 11] [5, 5, 5, 11,
11] [4, 4, 7, 11,
11] |
|
Retour |
Partitions
– Introduction
Itérations
palindromiques (Palindromes retard) |
Suite |
Partitions – En bref
et orientation
Partitions – Index
Autres
partitions particulières (Goldbach, Zeckendorf) |
Voir |
Partition
avec des nombres consécutifs
Partition avec des nombres différents
Partition
et théorème des nombres pentagonaux
Partition et montées d'un escalier
Compter les marches d'escalier |
Sites |
Various palindromic
sums – World of Numbers |
Cette page |
http://villemin.gerard.free.fr/Wwwgvmm/Addition/PttPalin.htm
|