Accueil

Orientation générale

Barre de recherche

DicoNombre

DicoMot Math

DicoCulture

Atlas des maths

Rubriques

Index alphabétique

Nouveautés

Actualités

Références

Édition du: 26/04/2022

M'écrire

Brèves de Maths

 

INDEX

Partition

Calculs

 

 

PARTITIONS

Approche

En bref et Index

S'y retrouver

Quantité de partitions

Palindromiques

Autres …

Faites un double-clic pour un retour en haut de page

 

 

Partitions palindromiques

 

Quelles sont les sommes (partitions) d'un nombre qui peuvent s'écrire en palindrome ?

Illustration avec 4 partitions palindromiques du nombre 37 Les deux premières lignes sont palindromiques en nombres, les deux suivantes en chiffres.

Il existe 21 637 partitions du nombre 37 dont 297 sont palindromiques en nombres et 68 en chiffres sans 1 ni 2.

 

Sommaire de cette page

>>> Approche

>>> Partitions palindromiques de n de 2 à 10

>>> Partitions palindromiques de n SANS 1

>>> Partitions de 37

Débutants

Addition

 

Glossaire

Addition

Voir Brève 883 / Nombre 37

 

 

Approche

haut

 

Exemple

Prenons les partitions du nombre 10.

Cette liste montre la suite des 42  partitions.

En rouge les sommes non palindromes.

En noir les 19 sommes palindromes.

 

La somme des nombres entre crochet est 10.

 

 

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

[1, 1, 1, 1, 2, 1, 1, 1, 1]

[1, 1, 1, 2, 2,1, 1, 1]

[1, 1, 2, 2, 2, 1, 1]

[1, 2, 2, 2, 2, 1]

[2, 2, 2, 2, 2]

[1, 1, 1, 1, 1, 1, 1, 3]

[1, 1, 1, 1, 1, 2, 3]

[1, 1, 1, 2, 2, 3]

[1, 2, 2, 2, 3]

[1, 1, 3, 3,  1, 1]

[1, 3, 2, 3, 1]

[2, 3, 3, 2]

[1, 3, 3, 3]

 

[1, 1, 1, 4, 1, 1, 1]

[1, 1, 1, 1, 2, 4]

[1, 2, 4, 2, 1]

[2, 2, 2, 4]

[1, 1, 1, 3, 4]

[1, 2, 3, 4]

[3, 4, 3]

[1, 4, 4, 1]

[4, 2, 4]

[1, 1, 1, 1, 1, 5]

[1, 1, 1, 2, 5]

[1, 2, 2, 5]

[1, 1, 3, 5]

[2, 3, 5]

[1, 4, 5]

[5, 5]

[1, 1, 6, 1, 1]

[1, 1, 2, 6]

[2, 6, 2]

[1, 3, 6]

[4, 6]

[1, 1, 1, 7]

[1, 2, 7]

[3, 7]

[1, 8, 1]

[2, 8]

[1, 9]

[10]

 

Observations

 

 

Pour former une somme palindromique:

*      si la quantité de termes est paire, il faut pouvoir arranger les nombres par couples; et

*      si la quantité est impaire, il faut former des couples et disposer d'un nombre isolé, lequel prendra la position centrale.
 

 

 

Partitions palindromiques de n de 2 à 10

haut

 

n, p, pp

 

Toutes les partitions palindromes (pp) de n parmi les p partitions de n.

On donne la liste croissante des nombres; il suffit de les réorganiser pour constituer la somme palindrome. Ainsi, par exemple [1, 1, 2] deviendra [1, 2, 1].

Exemple de lecture: 5, 7, 4 veut dire que le nombre 5 a 7 partitions dont 4 sont palindromes.

 

2, 2, 2

[1, 1]

[2]

 

3, 3, 2

[1, 1, 1]

[3]

 

4, 5, 4

[1, 1, 1, 1]

[1, 1, 2]

[2, 2]

[4]

5, 7, 4

[1, 1, 1, 1, 1]

[1, 2, 2]

[1, 1, 3]

[5]

6, 11, 7

[1, 1, 1, 1, 1, 1]

[1, 1, 1, 1, 2]

[1, 1, 2, 2]

[2, 2, 2]

[3, 3]

[1, 1, 4]

[6

7, 15, 7

[1, 1, 1, 1, 1, 1, 1]

[1, 1, 1, 2, 2]

[1, 1, 1, 1, 3]

[2, 2, 3]

[1, 3, 3]

[1, 1, 5]

[7]

8, 22, 12

[1, 1, 1, 1, 1, 1, 1, 1]

[1, 1, 1, 1, 1, 1, 2]

[1, 1, 1, 1, 2, 2]

[1, 1, 2, 2, 2]

[2, 2, 2, 2]

[1, 1, 3, 3]

[2, 3, 3]

[1, 1, 1, 1, 4]

[2, 2, 4]

[4, 4]

[1, 1, 6]

[8]

9, 30, 12

[1, 1, 1, 1, 1, 1, 1, 1, 1]

[1, 1, 1, 1, 1, 2, 2]

[1, 2, 2, 2, 2]

[1, 1, 1, 1, 1, 1, 3]

[1, 1, 2, 2, 3]

[1, 1, 1, 3, 3]

[3, 3, 3]

[1, 4, 4]

[1, 1, 1, 1, 5]

[2, 2, 5]

[1, 1, 7]

[9]

10, 42, 19

 

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

[1, 1, 1, 1, 1, 1, 1, 1, 2]

[1, 1, 1, 1, 1, 1, 2, 2]

[1, 1, 1, 1, 2, 2, 2]

[1, 1, 2, 2, 2, 2]

[2, 2, 2, 2, 2]

[1, 1, 1, 1, 3, 3]

[1, 1, 2, 3, 3]

[2, 2, 3, 3]

[1, 1, 1, 1, 1, 1, 4]

[1, 1, 2, 2, 4]

[3, 3, 4]

[1, 1, 4, 4]

[2, 4, 4]

[5, 5]

[1, 1, 1, 1, 6]

[2, 2, 6]

[1, 1, 8]

[10]

 

Liste des triplets [n, p, pp] pour n de 2 à 69

 

[2, 2, 2], [3, 3, 2], [4, 5, 4], [5, 7, 4], [6, 11, 7], [7, 15, 7], [8, 22, 12], [9, 30, 12], [10, 42, 19], [11, 56, 19], [12, 77, 30], [13, 101, 30], [14, 135, 45], [15, 176, 45], [16, 231, 67], [17, 297, 67], [18, 385, 97], [19, 490, 97], [20, 627, 139], [21, 792, 139], [22, 1002, 195], [23, 1255, 195], [24, 1575, 272], [25, 1958, 272], [26, 2436, 373], [27, 3010, 373], [28, 3718, 508], [29, 4565, 508], [30, 5604, 684], [31, 6842, 684], [32, 8349, 915], [33, 10143, 915], [34, 12310, 1212], [35, 14883, 1212], [36, 17977, 1597], [37, 21637, 1597], [38, 26015, 2087], [39, 31185, 2087], [40, 37338, 2714], [41, 44583, 2714], [42, 53174, 3506], [43, 63261, 3506], [44, 75175, 4508], [45, 89134, 4508], [46, 105558, 5763], [47, 124754, 5763], [48, 147273, 7338], [49, 173525, 7338], [50, 204226, 9296], [51, 239943, 9296], [52, 281589, 11732], [53, 329931, 11732], [54, 386155, 14742], [55, 451276, 14742], [56, 526823, 18460], [57, 614154, 18460], [58, 715220, 23025], [59, 831820, 23025], [60, 966467, 28629], [61, 1121505, 28629], [62, 1300156, 35471], [63, 1505499, 35471], [64, 1741630, 43820], [65, 2012558, 43820], [66, 2323520, 53963], [67, 2679689, 53963], [68, 3087735, 66273], [69, 3554345, 66273] …

 

Partitions palindromiques de n SANS 1

haut

10, 42, 7

[2, 2, 2, 2, 2]

[2, 2, 3, 3]

[3, 3, 4]

[2, 4, 4]

[5, 5]

[2, 2, 6]

[10]

11, 56, 5

[2, 2, 2, 2, 3]

[3, 4, 4]

[3, 3, 5]

[2, 2, 7]

[11]

12, 77, 11

[2, 2, 2, 2, 2, 2]

[2, 2, 2, 3, 3]

[3, 3, 3, 3]

[2, 2, 2, 2, 4]

[2, 2, 4, 4]

[4, 4, 4]

[2, 5, 5]

[3, 3, 6]

[6, 6]

[2, 2, 8]

[12]

13, 101, 7

[2, 2, 3, 3, 3]

[2, 2, 2, 2, 5]

[4, 4, 5]

[3, 5, 5]

[3, 3, 7]

[2, 2, 9]

[13]

14, 135, 15

[2, 2, 2, 2, 2, 2, 2]

[2, 2, 2, 2, 3, 3]

[2, 3, 3, 3, 3]

[2, 2, 3, 3, 4]

[2, 2, 2, 4, 4]

[3, 3, 4, 4]

[2, 2, 5, 5]

[4, 5, 5]

[2, 2, 2, 2, 6]

[4, 4, 6]

[2, 6, 6]

[7, 7]

[3, 3, 8]

[2, 2, 10]

[14]

15, 176, 11

[2, 2, 2, 2, 2, 2, 3]

[3, 3, 3, 3, 3]

[2, 2, 3, 4, 4]

[2, 2, 3, 3, 5]

[5, 5, 5]

[3, 6, 6]

[2, 2, 2, 2, 7]

[4, 4, 7]

[3, 3, 9]

[2, 2, 11]

[15]

16, 231, 22

[2, 2, 2, 2, 2, 2, 2, 2]

[2, 2, 2, 2, 2, 3, 3]

[2, 2, 3, 3, 3, 3]

[2, 2, 2, 2, 2, 2, 4]

[3, 3, 3, 3, 4]

[2, 2, 2, 2, 4, 4]

[2, 3, 3, 4, 4]

[2, 2, 4, 4, 4]

[4, 4, 4, 4]

[2, 2, 2, 5, 5]

[3, 3, 5, 5]

[2, 2, 3, 3, 6]

[5, 5, 6]

[2, 2, 6, 6]

[4, 6, 6]

[2, 7, 7]

[2, 2, 2, 2, 8]

[4, 4, 8]

[8, 8]

[3, 3, 10]

[2, 2, 12]

[16]

17, 297, 15

[2, 2, 2, 2, 3, 3, 3]

[3, 3, 3, 4, 4]

[2, 2, 2, 2, 2, 2, 5]

[3, 3, 3, 3, 5]

[2, 2, 4, 4, 5]

[2, 2, 3, 5, 5]

[5, 6, 6]

[2, 2, 3, 3, 7]

[5, 5, 7]

[3, 7, 7]

[2, 2, 2, 2, 9]

[4, 4, 9]

[3, 3, 11]

[2, 2, 13]

[17]

18, 385, 30

[2, 2, 2, 2, 2, 2, 2, 2, 2]

[2, 2, 2, 2, 2, 2, 3, 3]

[2, 2, 2, 3, 3, 3, 3]

[3, 3, 3, 3, 3, 3]

[2, 2, 2, 2, 3, 3, 4]

[2, 2, 2, 2, 2, 4, 4]

[2, 2, 3, 3, 4, 4]

[3, 3, 4, 4, 4]

[2, 4, 4, 4, 4]

[2, 2, 2, 2, 5, 5]

[2, 3, 3, 5, 5]

[2, 2, 4, 5, 5]

[4, 4, 5, 5]

[2, 2, 2, 2, 2, 2, 6]

[3, 3, 3, 3, 6]

[2, 2, 4, 4, 6]

[2, 2, 2, 6, 6]

[3, 3, 6, 6]

[6, 6, 6]

[2, 2, 7, 7]

[4, 7, 7]

[2, 2, 3, 3, 8]

[5, 5, 8]

[2, 8, 8]

[9, 9]

[2, 2, 2, 2, 10]

[4, 4, 10]

[3, 3, 12]

[2, 2, 14]

[18]

19, 490, 22

[2, 2, 2, 2, 2, 2, 2, 2, 3]

[2, 2, 3, 3, 3, 3, 3]

[2, 2, 2, 2, 3, 4, 4]

[3, 4, 4, 4, 4]

[2, 2, 2, 2, 3, 3, 5]

[3, 3, 4, 4, 5]

[3, 3, 3, 5, 5]

[2, 2, 5, 5, 5]

[2, 2, 3, 6, 6]

[2, 2, 2, 2, 2, 2, 7]

[3, 3, 3, 3, 7]

[2, 2, 4, 4, 7]

[6, 6, 7]

[5, 7, 7]

[3, 8, 8]

[2, 2, 3, 3, 9]

[5, 5, 9]

[2, 2, 2, 2, 11]

[4, 4, 11]

[3, 3, 13]

[2, 2, 15]

[19]

20, 627, 42

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

[2, 2, 2, 2, 2, 2, 2, 3, 3]

[2, 2, 2, 2, 3, 3, 3, 3]

[2, 3, 3, 3, 3, 3, 3]

[2, 2, 2, 2, 2, 2, 2, 2, 4]

[2, 2, 3, 3, 3, 3, 4]

[2, 2, 2, 2, 2, 2, 4, 4]

[2, 2, 2, 3, 3, 4, 4]

[3, 3, 3, 3, 4, 4]

[2, 2, 2, 2, 4, 4, 4]

[2, 2, 4, 4, 4, 4]

[4, 4, 4, 4, 4]

[2, 2, 2, 2, 2, 5, 5]

[2, 2, 3, 3, 5, 5]

[3, 3, 4, 5, 5]

[2, 4, 4, 5, 5]

[5, 5, 5, 5]

[2, 2, 2, 2, 3, 3, 6]

[3, 3, 4, 4, 6]

[2, 2, 5, 5, 6]

[2, 2, 2, 2, 6, 6]

[2, 3, 3, 6, 6]

[2, 2, 4, 6, 6]

[4, 4, 6, 6]

[2, 2, 2, 7, 7]

[3, 3, 7, 7]

[6, 7, 7]

[2, 2, 2, 2, 2, 2, 8]

[3, 3, 3, 3, 8]

[2, 2, 4, 4, 8]

[6, 6, 8]

[2, 2, 8, 8]

[4, 8, 8]

[2, 9, 9]

[2, 2, 3, 3, 10]

[5, 5, 10]

[10, 10]

[2, 2, 2, 2, 12]

[4, 4, 12]

[3, 3, 14]

[2, 2, 16]

[20] 20, 627, 42

 

Liste des triplets [n, p, pp1] pour n de 2 à 69

 

[2, 2, 1], [3, 3, 1], [4, 5, 2], [5, 7, 1], [6, 11, 3], [7, 15, 2], [8, 22, 5], [9, 30, 3], [10, 42, 7], [11, 56, 5], [12, 77, 11], [13, 101, 7], [14, 135, 15], [15, 176, 11], [16, 231, 22], [17, 297, 15], [18, 385, 30], [19, 490, 22], [20, 627, 42], [21, 792, 30], [22, 1002, 56], [23, 1255, 42], [24, 1575, 77], [25, 1958, 56], [26, 2436, 101], [27, 3010, 77], [28, 3718, 135], [29, 4565, 101], [30, 5604, 176], [31, 6842, 135], [32, 8349, 231], [33, 10143, 176], [34, 12310, 297], [35, 14883, 231], [36, 17977, 385], [37, 21637, 297], [38, 26015, 490], [39, 31185, 385], [40, 37338, 627], [41, 44583, 490], [42, 53174, 792], [43, 63261, 627], [44, 75175, 1002], [45, 89134, 792], [46, 105558, 1255], [47, 124754, 1002], [48, 147273, 1575], [49, 173525, 1255], [50, 204226, 1958], [51, 239943, 1575], [52, 281589, 2436], [53, 329931, 1958], [54, 386155, 3010], [55, 451276, 2436], [56, 526823, 3718], [57, 614154, 3010], [58, 715220, 4565], [59, 831820, 3718], [60, 966467, 5604], [61, 1121505, 4565], [62, 1300156, 6842], [63, 1505499, 5604], [64, 1741630, 8349], [65, 2012558, 6842], [66, 2323520, 10143], [67, 2679689, 8349], [68, 3087735, 12310], [69, 3554345, 10143]

 

Partitions de 37

haut

 

Les 23 partitions palindromiques de 37 en chiffres sans le 1, 2 et 3

[4, 4, 4, 4, 4, 4, 4, 4, 5]

[5, 5, 5, 5, 5, 6, 6]

[4, 4, 5, 6, 6, 6, 6]

[5, 5, 5, 5, 5, 5, 7]

[4, 4, 5, 5, 6, 6, 7]

[4, 4, 5, 5, 5, 7, 7]

[4, 4, 4, 4, 7, 7, 7]

[4, 4, 4, 4, 5, 8, 8]

[7, 7, 7, 8, 8]

[5, 8, 8, 8, 8]

[4, 4, 5, 5, 5, 5, 9]

[4, 4, 4, 4, 6, 6, 9]

[7, 7, 7, 7, 9]

[6, 6, 8, 8, 9]

[6, 6, 7, 9, 9]

[5, 7, 7, 9, 9]

[5, 5, 9, 9, 9]

[4, 4, 4, 4, 5, 5, 11]

[6, 6, 7, 7, 11]

[5, 5, 8, 8, 11]

[4, 4, 9, 9, 11]

[5, 5, 5, 11, 11]

[4, 4, 7, 11, 11]

 

 

Haut de page

 

Retour

*      Partitions – Introduction

*      Itérations palindromiques (Palindromes retard)

Suite

*      Partitions – En bref et orientation

*      PartitionsIndex

*      Autres partitions particulières (Goldbach, Zeckendorf)

*      Partitions distinctes et théorème des nombres pentagonaux

Voir

*      Partition avec des nombres consécutifs

*      Partition avec des nombres différents

*      Partition et théorème des nombres pentagonaux

*      Partition et montées d'un escalier

*      Compter les marches d'escalier

*      Rectangles magiques à répétitions

*      Répartition de n balles en k boites

Sites

*      Various palindromic sums – World of Numbers

Cette page

http://villemin.gerard.free.fr/Wwwgvmm/Addition/PttPalin.htm